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Introduction

Protein kinases are at the crossroads of multiple signaling 
pathways controlling the cell cycle and/or apoptosis, which 
are deregulated in cancer. As such, they constitute ideal 
therapeutic targets. In total, 518 different kinases have been 
described, and this family occupies first rank among the 
families of genes struck by genetic alterations in tumors. 
Pharmacologically, they can easily be targeted, and several 
protein kinase inhibitors have now successfully been devel-
oped as drugs. For instance, trastuzumab (Herceptin®), which 
is a humanized monoclonal antibody targeting the HER2neu 
receptor, is used in metastatic breast cancer1. Imatinib 
mesylate (Gleevec®), which is a small molecule inhibitor of 
the tyrosine kinases BCR-ABL, KIT, and PDGFRA/B, is effi-
cient in the treatment of chronic myeloid leukemia, diges-
tive stromal tumors, and idiopathic hypereosinophilia2.

Kinases are responsible for the phosphorylation of mis-
cellaneous proteins and present a high sequence similarity, 
with conserved structural and regulatory elements such as 
the adenosine phosphate (ATP) binding site, which is the 
target of most kinase inhibitors. This results in a paradox in 
obtaining selective inhibitors: a ligand may act on several 
kinases leading to undesired toxicity. However, this problem 
may be addressed by kinase profile assays to measure specific 

affinities between different proteins3,4 or even between iso-
forms of a kinase5.

Glycogen synthase kinase-3 (GSK-3) belongs to the 
CMGC family (containing CDK, MAPK, GSK-3, and CLK), 
and has stirred up much interest since it is connected to 
several pathologies such as diabetes6, Alzheimer disease7, 
neurodegenerative disorders8, and cancer9. Two isoforms 
exist with similar functions and substrate affinities10.

Many inhibitors of GSK-3β have been reported in the 
literature (with known affinity) along with X-ray complexes 
deposited in the Protein Data Bank (PDB). In the course 
of our search for new anti-cancer drugs, we are interested 
in developing in silico models of some kinases in order to 
perform virtual screening (VS). VS is an ensemble of compu-
tational procedures aiming at selecting the most promising 
compounds for experimental screening from an electronic 
database. Because of the reasons stated above, GSK-3β 
seemed a worthy candidate to start our studies. Such models 
should be as reliable as possible, which means giving a high 
correlation between biological and calculated activities, but 
they should also be simple to process and allow fast screen-
ing of large chemical databases.

Among the docking programs developed for VS, Dock11 
presents a number of advantages: a robust algorithm 
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Abstract
Molecular docking was used in order to prioritize organic syntheses or experimental evaluations. Different 
GSK-3β protein models were generated in silico from a known X-ray structure. A set of 42 known inhibitors were 
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The biological activities of the chemicals were then compared to each set of results and one of the rigid models 
emerged in combination with two scoring functions as giving the best correlation. This methodology constitutes 
an easy and accurate way to generate reliable models for virtual database screening.
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allowing an efficient sampling of the conformational space, 
a reasonable average running time per ligand, and the avail-
ability of an executable multi-processor. This software has 
been used extensively for a number of projects and is free to 
academics. When evaluating the fitness of a given chemical 
for a specific protein, one has to determine the free energy of 
the resulting ligand–protein complex with a scoring function. 
This prediction is performed during the docking process but 
it may also be realized afterwards as a means to compare the 
different techniques to calculate the stability of the obtained 
data. Since the chosen docking program does not allow pro-
tein flexibility, we docked a set of known inhibitors in differ-
ent structures of the rigid receptor.

In this report, we describe our methodology in selecting a 
combination of protein model-scoring functions to perform 
virtual screening of large chemical databases using Dock 
software.

Materials and methods

Preparations of the receptor protein models
The X-ray structure 1Q3D12 was selected from the PDB13; it 
is a dimer of two GSK-3β nearly identical chains incorpo-
rating staurosporine as a ligand in the active site. Insight 
II (2000)14 was used to complete the missing residues then 
to add hydrogens and charges according to a consistent 
valence force field (CVFF)15. This structure was chosen 
because the ligand staurosporine is the most hindering 
known inhibitor while being less flexible; it presents the 
largest interaction surface of the kinase binding site. With 
the following process, our purpose was to obtain different 
states of the kinase that would allow binding of a wide vari-
ety of ligands.

In order to obtain several models of the receptor, the 
structure was divided into two monomers whose similar-
ity was verified by superimposition. The staurosporine was 
fixed along with the backbone and the structure was mini-
mized during 1000 cycles using a steepest-descent, then a 
conjugate algorithm to a final root mean square (rms) gradi-
ent ≤0.01 kJ Å−1 mol−1. This led to the generation of the first 
receptor model, which was structurally very similar to the 
PDB protein. Then a constraint was applied to the backbone 
and gradually relaxed after the minimization steps; five mod-
els were thus obtained with the respective tether force con-
stants of 100, 50, 25, 10 and 0 kcal/Å2. Finally, the constraint 
applied on staurosporine was also relaxed to lead to the last 
receptor structure. From now on, these successive models 
will be referred as Start, T100, T50, T25, T10, T0, Relax. Each 
structure was obtained from the previous one as described 
above, and led to discrete to severe differences in terms of 
both side-chain displacements and backbone moves.

Construction of the ligand databases
All ligands were built with the Insight II Builder module; 
CVFF charges were applied with hydrogen atoms present 
and the structures were minimized by a combination 
of the algorithms described above. A first structurally 

homogeneous training set (Figure 1) was prepared with 
13 indirubines with known affinities ranging from 5 nM to 
>100 µM16.

These were chosen to start our study since this family 
of chemicals is one of the most prominent among kinase 
inhibitors. A second training set with much more structural 
diversity (Figure 2) was prepared from three scaffolds17 fol-
lowing a procedure similar to the one described above. The 
reported biological affinities of these 29 chemicals for GSK-3β 
ranged from 5 nM to 23 µM. Two of these 29 molecules bear 
a piperidine cycle which is flexible (compounds 23–25 and 
26–28), yet rings are treated as rigid by the used docking 
software. As a consequence, a Monte-Carlo conformational 
search was performed, and three different representative 
conformations were chosen since there is no way to predict 
which conformation is more likely to be active. The ranking 
calculated for such ligands is a mean of the rankings of the 
three conformations.

Virtual screening with Dock
Dock version 5.4 was used as a multi-processor execut-
able on an IBM cluster of 32 Xeon 2.8 GHz hyper-threaded 
processors, under the Linux operating system. The following 
process was repeated for each protein model generated as 
described above.

First, a Connolly surface of the binding site was generated 
by using a 1.4 Å probe radius, followed by the generation 
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Figure 1.  Structures of the indirubines composing training set 1.
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of a set of overlapping spheres that were then clustered 
according to their spatial distribution. The spheres located 
too distant from the binding site were manually elimi-
nated in the final model cluster. To compute interaction 
energies, 3D grids of 0.3 Å resolution were centered on the 
binding site. These energy-scoring grids were obtained 
by using an all-atom model and a distance-dependent 
dielectric function with an infinite cutoff. The size of the 
grid box was chosen to enclose all selected spheres using 
an extra margin of 8 Å. A flexible ligand docking was then 
performed starting with a selection and matching of an 
anchor cycle within a maximum of 2000 orientations, fol-
lowed by growth of the ligand with 100 configurations per 

cycle. The final step included energy minimizations with 
the Dock scoring function to generate a binding mode 
with the best energy score. The best 50 generated confor-
mations for each ligand were stored for further scoring. 
Five independent docking experiments were realized with 
different random seeds. The resulting ranking was a mean 
of these five results. In order to check the relevance of the 
obtained conformations, the root mean square devia-
tion (RMSD) was calculated with crystallographic data 
as reference when available. At least one close conforma-
tion (RMSD <2.0 Å) was found among the 10 best ranked 
compounds after docking, with very close energy values as 
calculated using the Dock scoring function.
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Figure 2.  Structures of the compounds composing training set 2. The three representative conformations of the piperidine ring are displayed for com-
pounds 26–28 (as obtained by Monte-Carlo conformational search).
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Re-scoring of the conformations generated by Dock
In order to compare the performance of the scoring tech-
niques, several scoring functions free to academics were 
used after the docking experiments. Every conformation 
issued from each of the five Dock experiments was re-
evaluated. For the following functions, the ligands were re-
ranked by the mean of their best results in each experiment. 
Correlation coefficients were calculated for all re-scoring 
results with the biological ranking as the known matrix 
(linear regression). All the obtained r values were superior 
to the r

0
 calculated for α = 1%, meaning that the variables 

(calculated rank and experimental affinity) were independ-
ent while correlated18.

GBSA19 is a force field-based scoring function read-
ily implemented within the Dock software, based on the 
generalized-born surface area (GB/SA) model of solvation 
for small molecules. XScore20 is an empirical scoring func-
tion developed from protein–ligand complexes from the 
PDB, composed of three independent functions (HM, HP, 
HS) plus a fourth obtained by combining the former (AV). 
DrugScore21,22 is a knowledge-based scoring function using 
potential mean force. Two DrugScore versions have been 
published with different training sets (_PDB and _CSD); 
each incorporates three different components (PAIR, SURF, 
and PAIRSURF).

Results and discussion

The methodology we describe herein was developed in 
order to overcome some of the problems one can encounter 
when using VS. The first problem is dependent on the dock-
ing software: in order to be able to screen huge libraries, it 
is necessary to limit the number of degrees of freedom to 
reduce computation time. In our case, we used a version 
of the Dock software that allows flexibility of the ligands, 
but treats the protein as a rigid object. The second problem 
results from the former, since it is well known that a receptor 
protein is flexible; one has to take into account the possibility 
for the side chains of the active site to move as a result of the 
insertion of a ligand (induced fit). Moreover, it has been pre-
viously reported that kinases are subject to conformational 
changes during activation23, and several methods have been 
presented to overcome this phenomenon24. A new method 
based on molecular dynamics was recently proposed to 
simulate the flexibility of the active site, and it might also 
be an alternative to our proposed protocol25. We devised a 
new way to obtain several models from a PDB structure (see 
“Materials and methods”) that presents the advantage of 
being inexpensive in terms of computational time and very 
easy to perform. With seven rigid “pictures” of the desired 
active site, we introduced conformational diversity into 
the target receptor. Thus, the VS of GSK-3β with two train-
ing sets of ligands was realized in a very short time, and we 
were able to compare the performance of a combination of 
protein model-scoring functions that would yield results in 
accordance with the known inhibitory activity of the chosen 
chemicals.

Indirubines have been reported as mimics for the ATP 
purine moiety and tested for kinase inhibition with success. 
The important structural similarity within this class of com-
pounds prompted our interest in testing our docking param-
eters with this first training set. The best poses obtained after 
each docking experiment were then re-evaluated with sev-
eral scoring functions and the ligands were ranked according 
to their respective results (number 1 was assigned to the best 
ligand while number 13 described the worst). The rankings 
obtained were means of five docking then re-scoring proc-
esses, and were used to calculate the regression coefficient 
for a scoring function, as plotted in Figure 3.

Observation of the variations shows a dependence on the 
protein model, while the calculated correlations span from 
a negative value up to 80%. The four functions embedded 
in XScore displayed the same tendency, with a dramatic 
decrease with the T10 model and much better results with 
the Relax model. The GBSA function showed a very poor 
performance when applied on this training set, while the 
Dock function was better, following the same inclination. 
The DrugScore functions (PAIR or PAIRSURF) achieved the 
best results with the starting model (80%), and decreased 
gradually while relaxing the protein backbone. The SURF 
function, which gave identical results whatever the version 
of DrugScore, presented a contrary aptitude, following the 
XScore trend. The advantage of DrugScore appeared when 
comparing the correlation coefficients obtained for the five 
experiments (up to 87%), meaning a more stable aspect and 
a better convergence in the selected poses, especially when 
considering the starting model (SD).

A second training set was then screened with the docking 
parameters devised for the indirubines, then submitted to 
the re-scoring processes described above. In this case, the 
chemical diversity was much higher with three different 
scaffolds, along with the increased number of ligands; this 
led to lower correlation coefficients as shown in Figure 4.
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Again, a dependence on the protein model was observed; 
however, variations were weaker compared to the results 
obtained with the first training set. The Dock scoring func-
tion displayed nearly no dependence, while the GBSA func-
tion decreased rapidly to negative values and the XScore 
components were close to zero (note that the HS function 
showed a better trend than its congeners). The DrugScore 
function performed rather better than the average again, still 
with the exception of the SURF function, which was rather 
disappointing again. As observed with the first training set, 
the best correlation was obtained by the combination of 
PAIR_CSD and the SD model, even though both PAIRSURF 
functions also displayed good results. The correlation coef-
ficients were lower with this collection of compounds, but 
DrugScore functions again outperformed the others (see 
Table 1).

Many reasons have been discussed elsewhere to explain 
the individual performance of the scoring functions, but so 
far no general rules have been advanced about how to select 
an adequate one: the trial and error process still seems to be 
the only answer.

As expected, the correlations from the second train-
ing set stand lower than those obtained with indirubines. 
Nonetheless, the combination of the SD protein model with 
DrugScore has given reasonably good results in terms of 
ligand ranking compared to the known biological activity. 
Interestingly, the SD model, which is closest to the crystal 
structure obtained from the PDB, proved to be efficient 
enough. Since false positives or false negatives are unavoid-
able26 in VS, there is no other way to identify new ligands 
but to experimentally test these. With such a procedure as 
described herein, quick and easy to set up, we expect to be 
able to shorten considerably the list of compounds to screen 
biologically or to synthesize. Considering the huge number 
of chemically available compounds, there is still a need to 
prioritize the top list of compounds to consider for further 

experimentation. From this point of view and because 
computational methods have improved while calculation 
means have increased, it is now possible to envision VS 
of large chemical databases as an essential step in a drug 
design process.

Further work is in progress with other kinases, and 
an automatized process is under testing in order to per-
form reverse screening (looking for the target of a specific 
inhibitor).
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